2号站线路测试厌氧氨氧化污水处理技术

时间:2023-03-25 14:39       来源: 未知
手机2号站登录,2号站平台登录线路

 水质控制的重要指标就是氮含量。在工业社会发展的前提下,水体富氧化问题日益加重。因此,当前水处理技术的研究重1点就是对氮污染的控制与治理。传统废水处理一般是硝化-反硝化的脱氮工艺,需要外加碳源和碱,不但运行费用较高,还可能会造成二次污染,影响脱氮效率。随着科技的不断进步,研究者逐渐开始关注新型的生物脱氮技术,厌氧氨氧化(ANAMMOX)技术以其独1特的高1效低耗的特点应运而生,并逐渐得以开发应用。
 
  1、厌氧氨氧化反应机理
 
  根据国内外相关学者的研究,厌氧氨氧化指的是在厌氧的条件下,以氨氮(NH4+N)为电子供体,亚硝酸氮(NO2-N)为电子受体,以CO2或HCO3-为碳源,通过厌氧氨氧化菌的作用,将氨氮氧化为氮气(N2)的过程。其中,在厌氧氨氧化的过程中,也产生了中间产物联氨(N2H4)以及羟氨(NH2OH)。因此,在逐渐完善的研究中,就得到了如下的厌氧氨氧化反应公式:
 
厌氧氨氧
 
  根据反应方程式,以及厌氧氨氧化技术的原理,可以得出:在厌氧氨氧化的反应中只对CO2以及HCO3-产生了消耗,并没有进行外加碳源,因此不但能够有效实现成本的节约,也防止了反应中产生的二次污染;反应过程中几乎不产生N2O,能够有效避免传统脱氮造成的温室气体排放;反应过程产碱量为零,无需添加中和试剂,并较为环保。除此以外,该项技术还具有产泥量少,节省供氧动力消耗等多方面的优点,具有可持续开发利用的意义。
 
  2、厌氧氨氧化技术
 
  厌氧氨氧化污水处理技术有着诸多方面的优势,2号站登录经过了国内外学者对工艺技术的不断深入研究,目前已经存在多种形式的厌氧氨氧化技术,其中开发较为成熟的主要有亚硝化-厌氧氨氧化(SHARON-ANAMMOX)以及完全自养脱氮工艺(CANON)、氧限制自养硝化-反硝化(OLAND)等工艺技术。
 
  (1)亚硝化-厌氧氨氧化工艺
 
  短程硝化-厌氧氨氧化技术要分两部分完成,并需要在不同的反应器中进行。首先是亚硝化部分,能够实现50%左右的氨氮氧化,其次是厌氧氨氧化部分,完成剩余部分的氨氮氧化,并实现与亚硝化部分新生成的亚硝态氮进行厌氧氨氧化反应,生成氮气和硝态氮。因此,在两项技术的并列连用下,就不需要再外加亚硝氮,且在反应过程中能有效补偿亚硝化碱的消耗,使其达到碱的自平衡。将两种菌种分别放置在不同的反应器内,分别产生生物作用,也有利于功能菌的生长,有效减少水中有害物质的抑制效应。该工艺技术的优点是操作简单、需氧量低且厌氧环境好。较之传统技术,也能有效降低曝气量,为氨氧化菌的生长提供了舒适的条件。以外,还能有效减少N2O等温室气体的排放。该项串联技术目前多用于低碳氮化废水的处理,在垃圾渗滤液、2号站线路测试城镇污水处理厂等也有较好的处理效果。
 
  (2)限氧自养硝化-反硝化工艺
 
  限氧自养硝化-反硝化工艺是一种一步脱除氨氮,无需加入COD的新工艺技术,这是由比利时某大学微生物研究室研制开发的。在低氧的条件下,亚硝酸菌有着较强的溶解氧的亲和力,形成了亚硝酸的积累。通常条件下,亚硝酸菌饱和常数为0.2~0.4mg/L,与硝酸菌(1.2~1.5mg/L)有较大差异。限氧自养硝化-反硝化工艺利用这种差异性,就容易在较低温度下实现对亚硝酸菌的稳定积累,淘汰硝酸菌。后再实现厌氧氨氧化反应,产生氮气。与SHARON-ANAMMOX工艺相比,OLAND生物脱氮在硝化过程中更能节省溶解氧消耗,在相对较低的温度下脱氮效果更好。
 
  (3)完全自养脱氮工艺
 
  完全自养脱氮工艺技术是指通过对同一构筑物内溶解氧的控制来实现厌氧氨氧化,氨氮到氮气的转化过程都由自养菌完成。其基本原理是氨氮部分被亚硝化细菌氧化,形成亚硝氮;而剩余部分的氨氮与随后产生的亚硝氮发生氧化反应,就形成了氮气。在此过程中,由于完全自养脱氮反应所需的细菌都是自养型的细菌,反应过程也是在无机自养的环境下实现的,因此在反应期间无需再添加有机物。不过此项技术也容易受到硝酸菌的干扰,为保证其稳定运行,使厌氧氨氧化菌不受竞争,就需要严格控制反应条件和水质。因为完全自养脱氮工艺技术全程自养,因此广泛应用于实验室废水、城市污水等处理。