水质控制的重要指标就是氮含量。在工业社会发展的前提下,水体富氧化问题日益加重。因此,当前水处理技术的研究重1点就是对氮污染的控制与治理。传统废水处理一般是硝化-反硝化的脱氮工艺,需要外加碳源和碱,不但运行费用较高,还可能会造成二次污染,影响脱氮效率。随着科技的不断进步,研究者逐渐开始关注新型的生物脱氮技术,厌氧氨氧化(ANAMMOX)技术以其独1特的高1效低耗的特点应运而生,并逐渐得以开发应用。
1、厌氧氨氧化反应机理
根据国内外相关学者的研究,厌氧氨氧化指的是在厌氧的条件下,以氨氮(NH4+N)为电子供体,亚硝酸氮(NO2-N)为电子受体,以CO2或HCO3-为碳源,通过厌氧氨氧化菌的作用,将氨氮氧化为氮气(N2)的过程。其中,2号站用户注册在厌氧氨氧化的过程中,也产生了中间产物联氨(N2H4)以及羟氨(NH2OH)。因此,在逐渐完善的研究中,就得到了如下的厌氧氨氧化反应公式:
厌氧氨氧
根据反应方程式,以及厌氧氨氧化技术的原理,可以得出:在厌氧氨氧化的反应中只对CO2以及HCO3-产生了消耗,并没有进行外加碳源,因此不但能够有效实现成本的节约,也防止了反应中产生的二次污染;反应过程中几乎不产生N2O,能够有效避免传统脱氮造成的温室气体排放;反应过程产碱量为零,无需添加中和试剂,并较为环保。除此以外,该项技术还具有产泥量少,节省供氧动力消耗等多方面的优点,具有可持续开发利用的意义。
2、厌氧氨氧化技术
厌氧氨氧化污水处理技术有着诸多方面的优势,2号站娱乐注册登录经过了国内外学者对工艺技术的不断深入研究,目前已经存在多种形式的厌氧氨氧化技术,其中开发较为成熟的主要有亚硝化-厌氧氨氧化(SHARON-ANAMMOX)以及完全自养脱氮工艺(CANON)、氧限制自养硝化-反硝化(OLAND)等工艺技术。
(1)亚硝化-厌氧氨氧化工艺
短程硝化-厌氧氨氧化技术要分两部分完成,并需要在不同的反应器中进行。首先是亚硝化部分,能够实现50%左右的氨氮氧化,其次是厌氧氨氧化部分,完成剩余部分的氨氮氧化,并实现与亚硝化部分新生成的亚硝态氮进行厌氧氨氧化反应,生成氮气和硝态氮。因此,在两项技术的并列连用下,就不需要再外加亚硝氮,且在反应过程中能有效补偿亚硝化碱的消耗,使其达到碱的自平衡。将两种菌种分别放置在不同的反应器内,分别产生生物作用,也有利于功能菌的生长,有效减少水中有害物质的抑制效应。该工艺技术的优点是操作简单、需氧量低且厌氧环境好。较之传统技术,也能有效降低曝气量,为氨氧化菌的生长提供了舒适的条件。以外,还能有效减少N2O等温室气体的排放。该项串联技术目前多用于低碳氮化废水的处理,在垃圾渗滤液、城镇污水处理厂等也有较好的处理效果。
(2)限氧自养硝化-反硝化工艺
限氧自养硝化-反硝化工艺是一种一步脱除氨氮,无需加入COD的新工艺技术,这是由比利时某大学微生物研究室研制开发的。在低氧的条件下,亚硝酸菌有着较强的溶解氧的亲和力,形成了亚硝酸的积累。通常条件下,亚硝酸菌饱和常数为0.2~0.4mg/L,与硝酸菌(1.2~1.5mg/L)有较大差异。限氧自养硝化-反硝化工艺利用这种差异性,就容易在较低温度下实现对亚硝酸菌的稳定积累,淘汰硝酸菌。后再实现厌氧氨氧化反应,产生氮气。与SHARON-ANAMMOX工艺相比,OLAND生物脱氮在硝化过程中更能节省溶解氧消耗,在相对较低的温度下脱氮效果更好。